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Reduction of Dicationic Porphyrin with N?1,N%2- and N23,N2*- Double Bridge
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Novel 5H,10H-isoporphomethenes were obtained by the
NaBH, reduction of dicationic porphyrin with N2t,N%2-(1,2-
diphenyletheno) and N23,N2*-(ethoxycarbonylmethano) double
bridge.

A variety of reduced forms of porphyrin with different oxi-
dation states are known and they include isomeric forms arising
from imine—enamine tautomerism, for instance, between por-
phyrin and isoporphyrin.r  Phlorin, isophlorin, and porpho-
dimethenes are two-electron reduced porphyrins. Porpho-
methene and isoporphomethene are four-electron reduced forms
and porphyrinogen is a six-electron reduced form.?2 Since these
compounds are readily isomerized to chlorins or oxidized to por-
phyrin, their isolation and characterization are not easy.2 We
have been studying on redox chemistry of N,N'-bridged por-
phyrins and succeeded to obtain 5H-phlorins,* 15H-phlorins,®
and isophlorins® with remarkable stability. We describe here
that dicationic doubly N,N'-bridged porphyrin 1 undergoes
hydride attack at the 5-meso position and then at the 10-meso
position to give monocationic 5H-phlorin 3 and neutral isopor-
phomethenes 4a and 4b.
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We have recently isolated both of 18raromatic porphyrin
1 and 20m-antiaromatic isophlorin 2 when N2 N22-(1,2-
diphenyletheno) and N23,N2*-(ethoxycarbonylmethano) double
bridges were introduced.® While photoirradiation of 1 by a
xenon lamp for 1 min in the presence of N-benzylnicotinamide
(3 equiv) caused two-electron reduction to give 2 in 66% yield,
1 was reduced with 1 molar equiv of NaBH, in THF at room
temperature for 5 min to give 5H-phlorin perchlorate 37 in 91%
yield. The same compound was formed in 91% yield when the
isophlorin 2 in THF was protonated with agueous 1% HCI soln
followed by anion exchange with 1% agueous HCIO, soln.

Spectroscopic properties of 3 are consistent with the stereo-
chemistry where hydride attacks on the exo side of the 5-meso
position of 1. The observed NOE correlation between the sin-
glet at 4.22 ppm due to the meso-proton and the doublet at 5.34
ppm due to the ortho-phenyl protons at the N2,N?-bridge is
consistent with the presence of 5-exo-proton on the basis of the
5H-phlorin model structure 3' as depicted in Figure 1. This
stereochemistry is similar to the case of NaBH, reduction of
monocationic N%1,N%2-(1,2-diphenyletheno)-bridged porphyrin.4
The preferential reduction of 1 at the 5-meso position over the
15-meso position is explained in terms of a greater strain
imposed by the N2%,N?2-(1,2-diphenyl etheno)-bridge on the por-
phyrin ring than N23 N-(carboethoxymethano)-bridge.
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Figure 1. Optimized geometries on the AM1 level (side-on
views of the porphyrin plane) of a model SH-phlorin 3' (top)
and a model 5H,10H-isoporphomethene 4' (bottom) having
N’ ,N*-(MeC=CMe) and N*, N**-(CHMe) double bridge.
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The further reduction of 3 with 5 molar equiv of NaBH,
proceeded cleanly in THF at room temperature for 10 min to
give 5H,10H-isoporphomethenes 4a8 and 4b8 in 31% and 36%
yields, respectively, after chromatographic separation on silica
gel (R; values on a TLC plate with benzene: 0.80 and 0.57).
UV-vis spectra of 4a (539 nm) and 4b (531 nm) indicate that
multiple meso-positions are saturated. Nucleophilic addition of
hydride to 3 is expected to occur at the 10-meso position rather
than at the 15-meso position because the latter must lead to the
structure with charge separation. The 'H NMR spectra pattern
of 4a and 4b is consistent with 5H,10H-isoporphomethene. As
far as we know, these compounds are the first example of iso-
porphomethene, whereas some meso-alkylated porphomethenes
have recently been isolated.® ROESY correlation between the
10-meso-proton at 5.69 ppm and the N23 N®-methine proton at
6.84 ppm provides evidence in support for trans relationship of
the 5-meso-proton and the 10-meso-proton for 4a. A remark-
able up-field shift observed for the 12-pyrrole-p-proton (4.98
ppm) of 4a can be ascribed to the ring current effect of the 10-
meso-pheny! group that is on the exo side as depicted in the
model structure 4' of Figure 1. On the other hand, the ring cur-
rent effect of the 10-meso-phenyl group on the endo side of 4b
causes upfield shifts of the ethyl ester protons of the N23,N%-
methano bridge as seenin Table 1.

Table 1. 'H NMR Chemical shifs (8) of porphyrin dication (1),
phlorin monocation (3), and isoporphomethenes (4a) and (4b)

1 3 4a 4b

pyrrole- 9.68,896 7.72,7.32 5.53,5.81 6.10,6.00
p-H 9.42,8.58 7.47,7.09 5.80,5.58 5.92,5.69
4.98,5.90 6.15,5.89
6.44,5.70 6.31,5.64

5-meso-H - 4.22 5.34 5.38
10-meso-H - - 5.69 5.63
bridge- o-H 3.03 5.34 6.65,n.d 6.53,6.55

phenyl m-H 6.25 6.76 6.97,n.d 7.02,6.94

p-H 6.53 6.95 7.07,nd 7.06,7.05
CO,CH,CH3; 2.18 3.34 4.22 3.46
CO,CH,CHs  0.05 0.71 1.25 0.94
N,N'-CH -5.79 0.86 6.84 6.38
Measured in CDCl3.

Since the *H chemical shifts of the meso-protons and pyr-
role-B-protons of 4a and 4b are very similar to those of meso-
tetraphenylporphyrinogen (5.38 ppm for meso-H; 5.68 and 5.78
ppm for pyrrole-B-H),10 there is no residual ring current in 4a
and 4b. The Tconjugation should be completely interrupted at
the 10-meso position where two adjacent pyrroles are tilted in
the opposite directions as seen in the model structure of 4'. On
the other hand, two pyrroles next to the saturated 5-meso posi-
tion are tilted in the same direction (see 3' and 4' in Figure 1).
This fixed conformation alows Trorbitals at the 4 and 6-posi-
tions to come close and effects conjugation across the 5-meso
position. Although the chemical shifts of pyrrole-f3-protons are
diagnostic of the ring current effect, they may be influenced by
other factors such as charge.’* The great upfield shift of the
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N23 N?*-methine proton of 3 at 0.86 ppm in comparison with
that of 4a at 6.84 ppm well illustrates homoaromatic character
of 3. Taking into consideration the chemical shifts (-5.79 ppm)
of the corresponding proton of 1, diamagnetic ring current of 3
is estimated to be half as much as that of 1.

In conclusion, unusual two- and four-electron reduced
states of porphyrin chromophore were obtained with the aid of
N21 N22- and N23 N4 double bridge.
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